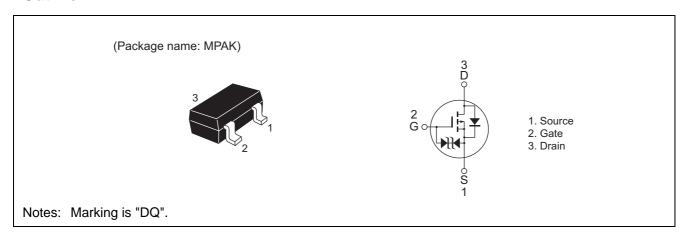


RQJ0304DQDQA


Features

• Low gate drive

 V_{DSS} : -30 V and 2.5 V gate drive

- Low drive current
- High speed switching
- Small traditional package (MPAK)

Outline

Absolute Maximum Ratings

 $(Ta = 25^{\circ}C)$

Item	Symbol	Ratings	Unit
Drain to source voltage	V _{DSS}	-30	V
Gate to source voltage	V _{GSS}	+8 / -12	V
Drain current	I _D	-1.8	A
Drain peak current	I _{D(pulse)} Note1	-8	A
Body - drain diode reverse drain current	I _{DR}	1.8	A
Channel dissipation	Pch Note2	0.8	W
Channel temperature	Tch	150	°C
Storage temperature	Tstg	−55 to +150	°C

Notes: 1. PW \leq 10 μ s, Duty cycle \leq 1%

2. When using the glass epoxy board (FR-4 $40\times40\times1$ mm)

RQJ0304DQDQA

Electrical Characteristics

 $(Ta = 25^{\circ}C)$

Item	Symbol	Min	Тур	Max	Unit	Test conditions
Drain to source breakdown voltage	$V_{(BR)DSS}$	-30		_	٧	$I_D = -10 \text{ mA}, V_{GS} = 0$
Gate to source breakdown voltage	$V_{(BR)GSS}$	+8	_	_	V	$I_G = +100 \mu\text{A}, V_{DS} = 0$
Gate to source breakdown voltage	$V_{(BR)GSS}$	-12	_	_	V	$I_G = -100 \mu\text{A}, V_{DS} = 0$
Gate to source leak current	I_{GSS}	_	_	+10	μΑ	$V_{GS} = +6 \text{ V}, V_{DS} = 0$
Gate to source leak current	I_{GSS}	_	_	-10	μΑ	$V_{GS} = -10 \text{ V}, V_{DS} = 0$
Drain to source leak current	I _{DSS}	_	_	-1	μΑ	$V_{DS} = -30 \text{ V}, V_{GS} = 0$
Gate to source cutoff voltage	$V_{GS(off)}$	-0.4	_	-1.4	V	$V_{DS} = -10 \text{ V}, I_{D} = -1 \text{ mA}$
Drain to source on state resistance	R _{DS(on)}	_	195	245	mΩ	$I_D = -1.0 \text{ A}, V_{GS} = -4.5 \text{ V}^{\text{Note3}}$
Drain to source on state resistance	R _{DS(on)}	_	300	420	mΩ	$I_D = -1.0 \text{ A}, V_{GS} = -2.5 \text{ V}^{\text{Note3}}$
Forward transfer admittance	y _{fs}	1.8	2.5	_	S	$I_D = -1.0 \text{ A}, V_{DS} = -10 \text{ V}^{\text{Note3}}$
Input capacitance	Ciss	_	185	_	pF	$V_{DS} = -10 \text{ V}, V_{GS} = 0,$
Output capacitance	Coss	_	45	_	pF	f = 1 MHz
Reverse transfer capacitance	Crss	_	25	_	pF	
Turn - on delay time	t _{d(on)}	_	18	_	ns	$I_D = -1.0 \text{ A}$
Rise time	t _r	_	33	_	ns	V _{GS} = -4.5 V
Turn - off delay time	t _{d(off)}	_	22	_	ns	$R_L = 10 \Omega$
Fall time	t _f	_	5	_	ns	$R_g = 4.7 \Omega$
Total gate charge	Qg	_	1.9	_	nC	$V_{DD} = -10 \text{ V}$
Gate to Source charge	Qgs	_	0.4	_	nC	$V_{GS} = -4.5 \text{ V}$
Gate to drain charge	Qgd	_	0.7	_	nC	$I_D = -2.0 \text{ A}$
Body - drain diode forward voltage	V_{DF}	_	-0.9	-1.3	V	$I_F = -2.0 \text{ A}, V_{GS} = 0^{\text{Note3}}$

Notes: 3. Pulse test